Part Number Hot Search : 
AT88SC X8566L TSA5059A SRD820 2SC2839 R43391 0DC24 S4008DS2
Product Description
Full Text Search
 

To Download TH8080KDC Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TH8080
SoloLIN Transceiver
Features
Compatible to LIN Specification Version 1.3 and 2.0 Compatible to ISO9141 functions Baud rate up to 20 kBaud Operating voltage VS = 7 to 18 V Low current consumption of typ. 24A Wake-up via LIN bus traffic Slew rate control for good EME behavior High EMI immunity Fully integrated receiver filter Bus terminals proof against short-circuits and transients in the automotive environment High impedance BUS pin in case of loss of ground and undervoltage condition High signal symmetry for using in RC - based slave nodes up to 2% clock tolerance Automotive Temperature Range of -40C to 125C CMOS compatible interface to microcontroller Thermal overload protection Load dump protection (40V) 4kV ESD protection Small SOIC8 package
Ordering Information Part No.
TH8080 KDC
Temperature Range
K (-40 to 125 C)
Package
DC (SOIC8)
General Description
The TH8080 is a physical layer device for a single wire data link capable of operating in applications where high data rate is not required and a lower data rate can achieve cost reductions in both the physical media components and in the microprocessor which use the network. The TH8080 is designed in accordance to the physical layer definition of the LIN Protocol Specification, Rev. 1.3 and 2.0.The IC furthermore can be used in ISO9141 systems. Because of the very low current consumption of the TH8080 in recessive state it's suitable for ECU applications with hard standby current requirements, whereby no sleep/wake up control from the microprocessor is necessary. TH8080 - Datasheet 3901008080 Page 1 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
Contents
1. 2. Functional Diagram ....................................................................................................4 Electrical Specification ..............................................................................................5 2.1 2.2 2.3 2.4 2.5 2.6 3. 3.1 3.2 3.3 4. 4.1 4.2 4.3 4.4 4.5 4.6 5. 5.1 5.2 5.3 5.4 6. 7. 8. Operating Conditions.............................................................................................5 Absolute Maximum Ratings ...................................................................................5 Static Characteristics.............................................................................................6 Dynamic Characteristics........................................................................................7 Timing Diagrams ...................................................................................................8 Test Circuits for Dynamic and Static Characteristics .............................................9 Initialization..........................................................................................................10 Operating Modes .................................................................................................10 LIN BUS Transceiver...........................................................................................10 Loss of battery .....................................................................................................12 Loss of Ground ....................................................................................................12 Short circuit to battery..........................................................................................12 Short circuit to ground .........................................................................................12 Thermal overload.................................................................................................12 Undervoltage Vcc ................................................................................................12 Bus loading requirements....................................................................................13 Min/max slope time calculation............................................................................14 Duty Cycle Calculation ........................................................................................15 Application Circuitry.............................................................................................16
Functional Description.............................................................................................10
Operating under Disturbance ..................................................................................12
Application Hints ......................................................................................................13
Pin Description .........................................................................................................17 Mechanical Specification SOIC8 .............................................................................18 Tape and Reel Specification ....................................................................................19 8.1 8.2 Tape Specification ...............................................................................................19 Reel Specification................................................................................................20 General Remarks ................................................................................................21 ESD-Test .............................................................................................................21 EMC ....................................................................................................................21 Assembly Information ..........................................................................................22 Disclaimer..............................................................................................................22
9.
ESD/EMC Remarks ...................................................................................................21 9.1 9.2 9.3
10. 11.
TH8080 - Datasheet 3901008080
Page 2 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
List of Figures
Figure 1 - Block Diagram ......................................................................................................................... 4 Figure 2 - Transmit delay........................................................................................................................ 8 Figure 3 - Receiver debouncing and propagation delay......................................................................... 8 Figure 4 - Test circuit for dynamic characteristics ................................................................................... 9 Figure 5 - Test circuit for automotive transients ...................................................................................... 9 Figure 6 - Receive impulse diagram...................................................................................................... 11 Figure 7 - Slope time calculation ........................................................................................................... 14 Figure 8 - Duty cycle calculation in accordance to LIN 2.0 ................................................................... 15 Figure 9 - Application Circuitry .............................................................................................................. 16 Figure 10 - Pin description SOIC8 package .......................................................................................... 17
TH8080 - Datasheet 3901008080
Page 3 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
1. Functional Diagram
TH8080
VS
Supply and References
Biasing and Bandgap
Thermal Protection
VCC
POR
30K
SLEW RATE
TxD
BUS Driver
BUS
GND
RxD
Receive Comparator
Input Filter
Figure 1 - Block Diagram
TH8080 - Datasheet 3901008080
Page 4 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
2. Electrical Specification
All voltages are referenced to ground (GND). Positive currents flow into the IC. The absolute maximum ratings (in accordance with IEC 134) given in the table below are limiting values that do not lead to a permanent damage of the device but exceeding any of these limits may do so. Long term exposure to limiting values may effect the reliability of the device.
2.1 Operating Conditions
Parameter Battery supply voltage [1] Supply voltage Operating ambient temperature Symbol VS VCC Tamb Min 7 4.5 -40 Max 18 5.5 +125 Unit V V C
[1]
Vs is the IC supply voltage including voltage drop of reverse battery protection diode, VDROP = 0.4 to 1V, VBAT_ECU voltage range is 8 to 18V
2.2 Absolute Maximum Ratings
Parameter Battery Supply Voltage Supply Voltage Transient supply voltage Transient supply voltage Transient supply voltage BUS voltage Transient bus voltage Transient bus voltage Transient bus voltage DC voltage on pins TxD, RxD ESD capability of pin LIN,VS Symbol VS VCC VS.tr1 VS..tr2 VS..tr3 VBUS VBUS..tr1 VBUS.tr2 VBUS.tr3 VDC ESDHB Human body model, equivalent to discharge 100pF with 1.5k, Human body model, equivalent to discharge 100pF with 1.5k, in free air -55 -40 ISO 7637/1 pulse 1[1] 2[1] -150 -27 -40 -150 100 3B [2] -150 -0.3 -4 150 7 4 ISO 7637/1 pulses Condition t < 1 min Load dump, t < 500ms Min -0.3 -0.3 -150 100 150 40 Max 30 40 +7 Unit V V V V V V V V V V kV
ISO 7637/1 pulses 3A, 3B t < 500ms , Vs = 18V t < 500ms ,Vs = 0V ISO 7637/1 pulse 1 [2] ISO 7637/1 pulses 2 [2] ISO 7637/1 pulses 3A,
ESD capability of pin RxD, TxD, VCC Maximum latch - up free current at any Pin Thermal impedance Storage temperature Junction temperature
[1] [2]
ESDHB ILATCH JA Tstg Tvj
-2 -500
2 500 152 +150 +150
kV mA K/W C C
ISO 7637 test pulses are applied to VS via a reverse polarity diode and >2uF blocking capacitor. ISO 7637 test pulses are applied to BUS via a coupling capacitance of 1 nF.
TH8080 - Datasheet 3901008080
Page 5 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
2.3 Static Characteristics
Unless otherwise specified all values in the following tables are valid for VS = 7 to 18V, VCC = 4.5 to 5.5V and TAMB= -40 to 125C. All voltages are referenced to ground (GND), positive currents are flow into the IC. Parameter VCC undervoltage lockout Supply current, dominant Supply current, dominant Supply current, recessive Supply current, recessive Supply current, recessive Symbol VCC_UV ISd ICCd ISr ICCr ISr + ICCr Condition PIN VS, VCC VS > 7V, TxD=L VS = 18V,VCC = 5.5V, TxD = L VS = 18V,VCC = 5.5V, TxD = L VS = 18V,VCC = 5.5V,TxD=open VS = 18V,VCC = 5.5V,TxD=open VS = 12V,VCC = 5V, TxD=open, Tamb= 25 VBUS = VS, driver on VBUS = 0, VS = 12V, driver off VBUS > VS , 7V < VBUS < 18V 7V < VS < 18V, driver off VS = 0V, 0V < VBUS < 18V VS = 12V, 0 < VBUS < 18V -1 -600 2.75 1 0.8 10 18 24 4.3 3 1.5 20 30 V mA mA A A A Min Typ Max Unit
PIN BUS - Transmitter Short circuit bus current [2] [3] Pull up current bus [2] [3] Bus reverse current, recessive [2] [3] Bus reverse current loss of battery [2] [3] Bus current during loss of Ground [2] [3] Transmitter dominant voltage [1] [2] Transmitter dominant voltage [2] Bus input capacitance [1] IBUS_LIM IBUS_PU IBUS_PAS_rec IBUS IBUS_NO_GND 120 200 -200 5 5 1 1.2 2 25 35 mA mA A A mA V V pF
VBUSdom_DRV_2 VS = 7V, load = 500 VBUSdom_DRV_3 VS = 18V, load = 500 CBUS Pulse response via 10k, VPULSE=12V, VS open PIN BUS - Receiver 0.4 *VS
Receiver dominant voltage [2] [3] Receiver recessive voltage [2] [3] Center point of receiver threshold [1] [2] [3]
VBUSdom VBUSrec VBUS_CNT VHYS
V 0.6 *VS V V V
VBUS_CNT = (VBUSdom + VBUSrec )/2 0.487 *VS 0.5 *VS 0.512 *VS VBUS_CNTt = ( VBUSrec -VBUSdom ) PIN TXD 0.175 *VS 0.187 *VS
Receiver hysteresis [1] [2] [3]
High level input voltage Low level input voltage TxD pull up resistor
Vih Vil RIH_TXD
Rising edge Falling edge VTxD = 0V PIN RXD 0.3*VCC 10 15
0.7*VCC 20
V V k
Low level output voltage Leakage Current
Vol_rxd Vleak_rxd
IRxD = 2mA VRxD = 5.5V, recessive -10
0.9 10
V A
TH8080 - Datasheet 3901008080
Page 6 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
Parameter Thermal shutdown Thermal recovery Symbol Tsd [1] Thys [1] Condition Thermal Protection 155 126 180 150 C C Min Typ Max Unit
[1] [2] [3]
No production test, guaranteed by design and qualification In accordance to LIN physical layer specification 1.3 In accordance to LIN physical layer specification 2.0
2.4 Dynamic Characteristics
Unless otherwise specified all values in the following table are valid for VS = 7 to 18V and TAMB= -40 to 125oC. Parameter Propagation delay transmitter [1] [3] [7] Propagation delay transmitter symmetry Propagation delay receiver
[1] [5] [6] [7] [8] [3] [7]
Symbol ttrans_pd ttrans_sym trec_pdf trec_sym |tSR_HB|
Condition Bus loads: 1K/1nF, 660/6.8nF, 500/10nF Calculate ttrans_pdf - ttrans_pdr CRxD = 25pF Calculate ttrans_pdf - ttrans_pdr Bus load 1K/1nF; 660/6.8nF; 500/10nF VS = 18V Bus load 1K/1nF; 660/6.8nF; 500/10nF VS = 7V Bus load 1K/1nF; 660/6.8nF; 500/10nF
VS = 18V Calculate tsdom - tsrec
Min
Typ
Max 5
Unit s s s s V/s
-2
2 6
Propagation delay receiver symmetry [7] [8] Slew rate rising and falling edge, high battery [4] [7] Slew rate rising and falling edge, low battery [4] [7]
-2
1
2 2 3
|tSR_LB|
0.5
2
3
V/s
Slope Symmetry, high battery
[4] [7]
tssym_HB
-5
+5
s
Bus duty cycle 1 Bus duty cycle 2
[8] [9]
D1 D2
Calculate tBus_rec(min) / 100s Calculate tBus_rec(max) / 100s BUS rising and falling edge
0.396 0.581 1.5 4 s
[8] [9]
Receiver debounce time [2] [5] [6]
trec_deb
[1] [2] [3] [4] [5] [6] [7] [8] [9]
Propagation delays are not relevant for LIN protocol transmission, value only information parameter No production test, guaranteed by design and qualification See Figure 2 - Transmit delay See Figure 7 - Slope time and slew rate calculation in accordance to LIN 1.3 This parameter is tested by applying a square wave signal to the bus. The minimum slew rate for the bus rising and falling edges is 50V/us See Figure 3 - Receiver debouncing and propagation delay In accordance to LIN physical layer specification 1.3 In accordance to LIN physical layer specification 2.0 See Figure 8 - Duty cycle calculation in accordance to LIN 2.0
TH8080 - Datasheet 3901008080
Page 7 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
2.5 Timing Diagrams
50%
TxD ttrans_f VBUS
100% 95%
ttrans_r
BUS
5% 0%
RxD
Figure 2 - Transmit delay
t < trec_deb t < trec_deb
VBUS
t tREC_PDF tREC_PDR VRxD
50%
t
Figure 3 - Receiver debouncing and propagation delay
TH8080 - Datasheet 3901008080
Page 8 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
2.6 Test Circuits for Dynamic and Static Characteristics
100n RL
VS
VCC
100n
TH8080
BUS
CL TxD 2.7K RxD GND 20p
Figure 4 - Test circuit for dynamic characteristics
100n VS 500 2uF BUS 1nF TxD VCC
GND
RxD
Oszi
TH8080
Schaffnergenerator Puls3a,3b
12V
Puls1,2,4
Figure 5 - Test circuit for automotive transients
TH8080 - Datasheet 3901008080
Page 9 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
3. Functional Description
3.1 Initialization
After power on, the chip enters automatically the recessive state. If the voltage regulator provides the VCC - supply voltage, normal communication is possible.
3.2 Operating Modes
All operation modes will be handled from the TH8080 automatically.
Normal Mode
After power on, the IC switches automatically to normal mode. Bus communication is possible. If there is no communication on the bus line the power consumption of the IC is very low and therefore it is no standby management from the MCU necessary.
Thermal Shutdown Mode
If the junction temperature TJ is higher than 155C, the TH8080 will be switched into the thermal shutdown mode (bus driver will be switched off). If TJ falls below the thermal shutdown temperature (typ. 140C) the TH8080 will be switched to the normal mode.
3.3 LIN BUS Transceiver
The transceiver consists a bus-driver with slew rate control, current limitation and as well in the receiver a high voltage comparator followed by a debouncing unit.
BUS Input/Output
The recessive BUS level is generated from the integrated 30k pull up resistor in serial with a diode This diode prevent the reverse current of VBUS during differential voltage between VS and BUS (VBUS>VS). No additional termination resistor is necessary to use the TH8080 in LIN slave nodes. If this IC is used for LIN master nodes it is necessary that the BUS pin is terminated via a external 1k resistor in serial with a diode to VBAT.
TxD Input
During transmission the data at the pin TxD will be transferred to the BUS driver for generating a BUS signal. To minimize the electromagnetic emission of the bus line, the BUS driver is equipped with an integrated slew rate control and wave shaping unit. Transmitting will be interrupted if thermal shutdown is active. The CMOS compatible input TxD controls directly the BUS level: TxD = low TxD = high -> -> BUS = low (dominant level) BUS = high (recessive level)
The TxD pin has an internal pull up resistor connected to VCC. This secures that an open TxD pin generates a recessive BUS level.
TH8080 - Datasheet 3901008080
Page 10 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
RxD Output
The data signals from the BUS pin will be transferred continuously to the pin RxD. Short spikes on the bus signal are suppressed by the implemented debouncing circuit.
VS
VBUS_CNT_max 60% 50% 40% VhHYS
BUS
VBUS_CNT_min
t < trec_deb
t < trec_deb
RxD
Figure 6 - Receive impulse diagram
The receive threshold values VBUS_CNT_max and VBUS_CNT_min are symmetrical to the centre voltage of 0.5*VS with a hysteresis of typ. 0.175*VS. Including all tolerances the LIN specific receive threshold values of 0.4*VS and 0.6*VS will be secure observed. The received BUS signal will be output to the RxD pin: BUS < VBUS_CNT - 0.5 * VHYS BUS > VBUS_CNT + 0.5 * VHYS -> -> RxD = low (BUS dominant) RxD = high, floating (BUS recessive)
This pin is a buffered open drain output with a typical load of: Resistance: 2.7 kOhm Capacitance: < 25 pF
Datarate
The TH8080 is a constant slew rate transceiver that means the bus driver operates with a fixed slew rate range of 0.5 V/s V/T 3V/s. This principle secures a very good symmetry of the slope times between recessive to dominant and dominant to recessive slopes within the LIN bus load range (CBUS, Rterm). The TH8080 guarantees data rates up to 20kbit within the complete bus load range under worst case conditions. The constant slew rate principle is very robust against voltage drops and can operate with RCoscillator systems with a clock tolerance up to 2% between 2 nodes.
TH8080 - Datasheet 3901008080
Page 11 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
4. Operating under Disturbance
4.1 Loss of battery
If the ECU is disconnected from the battery, the bus pin is in high impedance state. There is no impact to the bus traffic and to the ECU itself.
4.2 Loss of Ground
In case of an interrupted ECU ground connection there is no influence to the bus line.
4.3 Short circuit to battery
The transmitter output current is limited to the specified value in case of short circuit to battery in order to protect the TH8080 itself against high current densities .
4.4 Short circuit to ground
If the bus line is shorted to negative shifted ground levels, there is no current flow from the ECU ground to the bus and no distortion of the bus traffic occurs.
4.5 Thermal overload
The TH8080 is protected against thermal overloads. If the chip temperature exceeds the specified value, the transmitter is switched off until thermal recovery. The receiver is still working while thermal shutdown.
4.6 Undervoltage Vcc
If the ECU regulated supply voltage is missing or decreases under the specified value, the transmitter is switched off to prevent undefined bus traffic.
TH8080 - Datasheet 3901008080
Page 12 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
5. Application Hints
5.1 Bus loading requirements
Parameter Operating voltage range Voltage drop of reverse protection diode Voltage drop at the serial diode in pull up path Battery shift voltage Ground shift voltage Master termination resistor Slave termination resistor Number of system nodes Total length of bus line Line capacitance Capacitance of master node Capacitance of slave node Total capacitance of the bus including slave and master capacitance Network Total Resistance Time constant of overall system Symbol VBAT VDrop_rev VSerDiode VShift_BAT VShift_GND Rmaster Rslave N LENBUS CLINE CMaster CSlave CBUS RNetwork 195 0.47 500 1 100 220 220 4 300 10 862 5 Min 8 0.4 0.4 0 0 900 20 2 1000 30 0.7 0.7 Typ Max 18 1 1 0.1 0.1 1100 60 16 40 150 m pF/m pF pF nF s Unit V V V VBAT VBAT k
Table 1 - Bus loading requirements
TH8080 - Datasheet 3901008080
Page 13 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
5.2 Slope time calculation
VBUS
100%
60%
60%
40%
40%
0%
Vdom
tsdom
tsrec
Figure 7 - Slope time and slew rate calculation in accordance to LIN 1.3
The slew rate of the bus voltage is measured between 40% and 60% of the output voltage swing (linear region). The output voltage swing is the difference between dominant and recessive bus voltage. dV/dt = 0.2*Vswing / (t40% - t60% ) The slope time is the extension of the slew rate tangent until the upper and lower voltage swing limits: tslope = 5 * (t40% - t60% ) The slope time of the recessive to dominant edge is directly determined by the slew rate control of the transmitter: tslope = Vswing / dV/dt The dominant to recessive edge is influenced from the network time constant and the slew rate control, because it's a passive edge. In case of low battery voltages and high bus loads the rising edge is only determined by the network. If the rising edge slew rate exceeds the value of the dominant one, the slew rate control determines the rising edge.
TH8080 - Datasheet 3901008080
Page 14 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
5.3 Duty Cycle Calculation
tBit
tBit
TxD
tdom(max) VSUP
100%
trec(min)
74.4%
tdom(min)
BUS
58.1% 42.2% 28.4%
58.1%
trec(max)
28.4%
VSS
0%
RxD
Figure 8 - Duty cycle calculation in accordance to LIN 2.0
With the timing parameters shown in Figure 8 two duty cycles , based on trec(min) and trec(max) can be calculated as follows : D1 = trec(min) / (2 * tBit) D2 = trec(max) / (2 * tBit) For proper operation at 20KBit/s ( tBit = 50s) the LIN driver has to fulfil the duty cycles specified in chapter 2.4 Dynamic Characteristics for supply voltages of 7 to 18V and the defined standard loads . Due to this simplified definition there is no need to measure slew rates, slope times, transmitter delays and dominant voltage levels as specified in the LIN physical layer specification 1.3. The device within the D1/D2 duty cycle range operates also in applications with reduced bus speed of 10.4KBit/s or below. In order to minimize EME, the slew rates of the transmitter can be reduced (approximately by 2 times). Such devices have to fulfil the duty cycle definition D3/D4 in the LIN physical layer specification 2.0. Devices within this duty cycle range cannot operate in 20KBit/s applications.
TH8080 - Datasheet 3901008080
Page 15 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
5.4 Application Circuitry
1N4001
VBAT
10
100nF
VIN
Voltage Regulator
(e.g.NCV8502)
VOUT RESET
SLAVE ECU
10
10k
100nF
47nF 2.7K
VCC
VS
220pF
RxD BUS
LIN
MCU
TH8080
TxD
GND
1N4001
100nF
10 VIN
Voltage Regulator
(e.g.NCV8501)
VOUT 10 10K
MASTER ECU
ENABLE 10K
RESET
47nF 100nF 2.7K VCC INH
47nF
VS
TH8082 [1]
RxD BUS
1K
MCU
TxD 220pF EN GND
[1] The TH8082 is a pin compatible transceiver with INH control
Figure 9 - Application Circuitry
TH8080 - Datasheet 3901008080
Page 16 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
6. Pin Description
RxD N.C. VCC TxD
1 2 3 4
8 7
N.C. VS BUS GND
TH8080
6 5
Figure 10 - Pin description SOIC8 package
Pin 1 2 3 4 5 6 7 8
Name RXD N.C. VCC TXD GND BUS VS N.C.
IO-Typ O
Description Receive data from BUS to core, LOW in dominant state
P I G I/O P
5V supply input Transmit data from core to BUS, LOW in dominant state Ground LIN bus pin, LOW in dominant state Battery input voltage
TH8080 - Datasheet 3901008080
Page 17 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
7. Mechanical Specification SOIC8
Small Outline Integrated Circiut (SOIC), SOIC 8, 150 mil A1 B C D E e H h L A 0 8 0 8 ZD A2
All Dimension in mm, coplanarity < 0.1 mm min max min max 0.10 0.25 0.004 0.0098 0.36 0.46 0.19 0.25 4.80 4.98 0.189 0.196 3.81 3.99 0.150 0.157 1.27 5.80 6.20 0.25 0.50 0.41 1.27 0.016 0.050 1.52 1.72 0.060 0.068 0.53 1.37 1.57 0.054 0.062
All Dimension in inch, coplanarity < 0.004" 0.014 0.0075 0.018 0.0098 0.050 0.2284 0.0099 0.244 0.0198 0.021
TH8080 - Datasheet 3901008080
Page 18 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
8. Tape and Reel Specification
8.1 Tape Specification
max. 10 max. 10
IC pocket
R
n. mi
Top View
Sectional View
T2 D0 T G1 K0 B1 S1 G2 T1 Cover Tape P1
B0
P0 P2 E
< A0 >
F W
D1
Abwickelrichtung
Standard Reel with diameter of 13" Package SOIC8 D0 1.5 +0.1 E 1.75 0.1 P0 4.0 0.1 P2 2.0 0.05 Tmax 0.6 Parts per Reel 2500 T1 max 0.1 G1 min 0.75 G2 min 0.75 B1 max 8.2 Width 12 mm D1 min 1.5 F 5.5 0.05 P1 4.0 0.1 Rmin 30 Pitch 8 mm T2 max 6.5 W 12.0 0.3
A0, B0, K0 can be calculated with package specification. Cover Tape width 9.2 mm.
TH8080 - Datasheet 3901008080
Page 19 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
8.2 Reel Specification
W2 W1
B* D* A C N
Amax 330 Width of half reel 4 mm 8 mm
B* 2.0 0.5 Nmin 100,0 100,0
C 13.0 +0,5/-0,2 W1 4,4 8,4
D*min 20.2 W2 max 7,1 11,1
TH8080 - Datasheet 3901008080
Page 20 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
9. ESD/EMC Remarks
9.1 General Remarks
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
9.2 ESD-Test
The TH8080 is tested according MIL883D (human body model).
9.3 EMC
The test on EMC impacts is done according to ISO 7637-1 for power supply pins and ISO 7637-3 for dataand signal pins. Power Supply pin VS:
Testpulse 1 2 3a/b 5 Condition t1 = 5 s / US = -100 V / tD = 2 ms t1 = 0.5 s / US = 100 V / tD = 0.05 ms US = -150 V/ US = 100 V burst 100ns / 10 ms / 90 ms break
Ri = 0.5 , tD = 400 ms
Duration 5000 pulses 5000 pulses 1h 10 pulses every 1min
tr = 0.1 ms / UP+US = 40 V
Signal pin BUS:
Testpulse 1 2 3a/b Condition t1 = 5 s / US = -100 V / tD = 2 ms t1 = 0.5 s / US = 100 V / tD = 0.05 ms US = -150 V/ US = 100 V burst 100ns / 10 ms / 90 ms break 1000 pulses 1000 pulses 1000 burst Duration
TH8080 - Datasheet 3901008080
Page 21 of 23
July 2004 Rev 006
TH8080
SoloLIN Transceiver
10. Assembly Information
This Melexis device is classified and qualified regarding soldering technology, solderability and moisture sensitivity level, as defined in this specification, according to following test methods: IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification For Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2) EIA/JEDEC JESD22-A113 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2) CECC00802 Standard Method For The Specification of Surface Mounting Components (SMDs) of Assessed Quality EIA/JEDEC JESD22-B106 Resistance to soldering temperature for through-hole mounted devices EN60749-15 Resistance to soldering temperature for through-hole mounted devices MIL 883 Method 2003 / EIA/JEDEC JESD22-B102 Solderability For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board. Based on Melexis commitment to environmental responsibility, European legislation (Directive on the Restriction of the Use of Certain Hazardous substances, RoHS) and customer requests, Melexis has installed a roadmap to qualify their package families for lead free processes also. Various lead free generic qualifications are running, current results on request. For more information on Melexis lead free statement http://www.melexis.com/html/pdf/MLXleadfree-statement.pdf see quality page at our website:
11. Disclaimer
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application. The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis' rendering of technical or other services. (c) 2002 Melexis NV. All rights reserved. TH8080 - Datasheet 3901008080 Page 22 of 23 July 2004 Rev 006
TH8080
SoloLIN Transceiver
Your notes
For the latest version of this document. Go to our website at
www.melexis.com
Or for additional information contact Melexis Direct: Europe and Japan:
Phone: +32 1367 0495 E-mail: sales_europe@melexis.com
All other locations:
Phone: +1 603 223 2362 E-mail: sales_usa@melexis.com
ISO/TS16949 and ISO14001 Certified TH8080 - Datasheet 3901008080 Page 23 of 23
July 2004 Rev 006


▲Up To Search▲   

 
Price & Availability of TH8080KDC

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X